.. _math_num_documentation.efficiency_error_metric: ========================= Efficiency & Error Metric ========================= The aim of this section is to present all the efficiency & error metrics that can be used to calibrate the model and evaluate its performance in simulating discharges. Denote :math:`Q` and :math:`Q^*` the simulated and observed discharge, respectively, with :math:`t\in]0 .. T]` representing a time step for each. NSE --- The Nash-Sutcliffe Efficiency .. math:: j_{nse} = 1 - \frac{\sum_{t=1}^{T}\left(Q(t) - Q^*(t)\right)^2}{\sum_{t=1}^{T}\left(Q^*(t) - \mu_{Q^*}\right)^2} with :math:`\mu_{Q^*}` the mean of the observed discharge. NNSE ---- The Normalized Nash-Sutcliffe Efficiency .. math:: j_{nnse} = \frac{1}{2 - j_{nse}} KGE --- The Kling-Gupta Efficiency .. math:: j_{kge} = 1 - \sqrt{(r - 1)^2 + (\alpha - 1)^2 + (\beta - 1)^2} with :math:`r` the Pearson correlation coefficient, :math:`\alpha` the variability of prediction errors, and :math:`\beta` the bias term. They are defined as follows: .. math:: :nowrap: \begin{eqnarray} &r& &=& &\frac{\text{cov}(Q, Q^*)}{\sigma_Q \sigma_{Q^*}}\\ &\alpha& &=& &\frac{\sigma_Q}{\sigma_{Q^*}}\\ &\beta& &=& &\frac{\mu_Q}{\mu_{Q^*}} \end{eqnarray} with :math:`\text{cov}(Q, Q^*)` the covariance between :math:`Q` and :math:`Q^*`, :math:`\mu_{Q}` and :math:`\mu_{Q^*}` the mean of the simulated and observed discharge, respectively, and :math:`\sigma_{Q}` and :math:`\sigma_{Q^*}` the standard deviation of the simulated and observed discharge, respectively. MAE --- The Mean Absolute Error .. math:: j_{mae} = \frac{1}{T} \sum_{t=1}^T \lvert Q(t) - Q^*(t) \rvert MAPE ---- The Mean Absolute Percentage Error .. math:: j_{mape} = \frac{1}{T} \sum_{t=1}^T \lvert \frac{Q(t) - Q^*(t)}{Q^*(t)} \rvert MSE --- The Mean Squared Error .. math:: j_{mse} = \frac{1}{T} \sum_{t=1}^T \left(Q(t) - Q^*(t)\right)^2 RMSE ---- The Root Mean Squared Error .. math:: j_{rmse} = \sqrt{j_{mse}} LGRM ---- The Logarithmic Error .. math:: j_{lgrm} = \sum_{t=1}^T Q^*(t) \ln\left(\frac{Q(t)}{Q^*(t)}\right)^2