.. _math_num_documentation.forward.regionalization_operators: ========================= Regionalization operators ========================= Here we introduce a pre-regionalization operator :math:`\mathcal{F}_{R}` enabling us to hypothesize a relationship between physiographic descriptors :math:`\boldsymbol{D}` and the hydrological model parameters :math:`\boldsymbol{\theta}` such that: .. math:: :name: eq:regio-mapping-intro \boldsymbol{\theta}(x)=\mathcal{F}_{R}(\boldsymbol{D}(x),\boldsymbol{\rho}(x)), \forall x \in \Omega with :math:`\boldsymbol{D}` the :math:`N_D`-dimensional vector of physiographic descriptor maps covering :math:`\Omega`, and :math:`\boldsymbol{\rho}` the vector of tunable regionalization parameters that is defined depending upon the following two types of pre-regionalization operators. Multivariate polynomial regression ********************************** A multivariate polynomial regression operator :math:`\mathcal{P}` that for the :math:`k^{th}`-parameter of the forward hydrological model writes: .. math:: :name: eq:polynom-regio \mathcal{F}_{R}: \boldsymbol{\rho} \mapsto \theta_{k}(x;\boldsymbol{D};\boldsymbol{\rho}) := s_{k}\left(\alpha_{k,0}+\sum_{d=1}^{N_{D}}\alpha_{k,d}D_{d}^{\beta_{k,d}}(x)\right),\,\forall\left(k,x\right)\in[1..N_{\theta}]\times\Omega with :math:`s_{k}(z)=l_{k}+(u_{k}-l_{k})/\left(1+e^{- z}\right),\,\forall z\in\mathbb{R}`, a transformation based on a sigmoid function with values in :math:`\left]l_k;u_k\right[`, thus imposing bound constrains in the direct hydrological model such that :math:`l_{k}<\theta_{k}(x)