smash.PrcpIndicesResult#
- class smash.PrcpIndicesResult[source]#
Represents the precipitation indices result.
See also
Model.prcp_indicesCompute precipitations indices of the Model.
Notes
This class is essentially a subclass of dict with attribute accessors and an additional method
PrcpIndicesResult.to_numpy.Examples
>>> setup, mesh = smash.load_dataset("cance") >>> model = smash.Model(setup, mesh) >>> prcpind = model.prcp_indices()
Convert the result to a numpy.ndarray:
>>> prcpind_tonumpy = prcpind.to_numpy() >>> prcpind_tonumpy array([[[nan, nan, nan, nan], [nan, nan, nan, nan], [nan, nan, nan, nan], ..., [nan, nan, nan, nan], [nan, nan, nan, nan], [nan, nan, nan, nan]]], dtype=float32)
>>> prcpind_tonumpy.shape (3, 1440, 4)
- Attributes:
- stdnumpy.ndarray
The precipitation spatial standard deviation.
- d1numpy.ndarray
The first scaled moment [Zoccatelli et al., 2011].
- d2numpy.ndarray
The second scaled moment [Zoccatelli et al., 2011].
- vgnumpy.ndarray
The vertical gap [Emmanuel et al., 2015].
Methods
clear()copy()fromkeys(iterable[, value])Create a new dictionary with keys from iterable and values set to value.
get(key[, default])Return the value for key if key is in the dictionary, else default.
items()keys()pop(key[, default])If the key is not found, return the default if given; otherwise, raise a KeyError.
popitem(/)Remove and return a (key, value) pair as a 2-tuple.
setdefault(key[, default])Insert key with a value of default if key is not in the dictionary.
to_numpy([axis])Convert the
PrcpIndicesResultobject to a numpy.ndarray.update([E, ]**F)If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
values()