smash.Model#

class smash.Model(setup, mesh)[source]#

Primary data structure of the hydrological model smash.

Parameters:
setupdict

Model initialization setup dictionary (see: setup arguments).

meshdict

Model initialization mesh dictionary. (see: mesh arguments).

See also

save_setup

Save Model initialization setup dictionary.

read_setup

Read Model initialization setup dictionary.

save_mesh

Save Model initialization mesh dictionary.

read_mesh

Read Model initialization mesh dictionary.

generate_mesh

Automatic mesh generation.

save_model

Save Model object.

read_model

Read Model object.

save_model_ddt

Save some derived data types of the Model object to HDF5 file.

read_model_ddt

Read derived data types of the Model object from HDF5 file.

Examples

>>> setup, mesh = smash.load_dataset("cance")
>>> model = smash.Model(setup, mesh)
>>> model
Structure: 'gr-a'
Spatio-Temporal dimension: (x: 28, y: 28, time: 1440)
Last update: Initialization
Attributes:
input_data

The input data of the Model.

mesh

The mesh of the Model.

output

The output of the Model.

parameters

The parameters of the Model.

setup

The setup of the Model.

states

The states of the Model.

Methods

ann_optimize([net, optimizer, ...])

Optimize the Model using Artificial Neural Network.

bayes_estimate([sample, alpha, n, ...])

Estimate prior Model parameters/states using Bayesian approach.

bayes_optimize([sample, alpha, n, ...])

Optimize the Model using Bayesian approach.

copy()

Make a deepcopy of the Model.

event_segmentation([peak_quant, max_duration])

Compute segmentation information of flood events over all catchments of the Model.

get_bound_constraints([states])

Get the boundary constraints of the Model parameters/states.

multiple_run(sample[, jobs_fun, wjobs_fun, ...])

Compute Multiple Run of Model.

optimize([mapping, algorithm, ...])

Optimize the Model.

prcp_indices()

Compute precipitations indices of the Model.

run([inplace])

Run the Model.

signatures([sign, obs_comp, event_seg])

Compute continuous or/and flood event signatures of the Model.

signatures_sensitivity([problem, n, sign, ...])

Compute the first- and total-order variance-based sensitivity (Sobol indices) of spatially uniform hydrological model parameters on the output signatures.