Model initialization#
Setup#
In this section all the setup options that can be passed to the setup dictionary in order to initialize the Model object will be presented.
Structure options#
structure: str, default “gr-a”Model structure. There are 4 different structures available:
- “gr-a”
4 parameters and 3 states structure.
- “gr-b”
4 parameters and 4 states structure.
- “gr-c”
5 parameters and 5 states structure.
- “gr-d”
3 parameters and 3 states structure.
Note
See the User Guide section: Model structure for more.
Time options#
dt: int, default 3600Simulation time step in seconds.
start_time: strSimulation start time. Required format is either
%Y%m%d%H%Mor%Y-%m-%d %H%M.end_time: strSimulation end time. Required format is either
%Y%m%d%H%Mor%Y-%m-%d %H%M.
Input data options#
read_qobs: bool, default FalseEnables the reading of observed dicharge files.
qobs_directory: strPath to the directory with the observed discharges files.
read_prcp: bool, default FalseEnables the reading of precipitation files.
prcp_format: str, default “tif”Precipitation files format selection. Possible formats are:
- “tif”
Tag Image File Format
- “nc”
Warning
NetCDF. Section in development.
prcp_conversion_factor: float, default 1.0Precipitaton conversion factor. Precipitation will be multiplied by the conversion factor.
prcp_directory: strPath to the directory with precipitaton files.
read_pet: bool, default FalseEnables the reading of evapotranspiration (PET) files.
pet_format: str, default “tif”PET files format selection. Possible formats are:
- “tif”
Tag Image File Format
- “nc”
Warning
NetCDF. Section in development.
pet_conversion_factor: float, default 1.0PET conversion factor. PET will be multiplied by the conversion factor.
daily_interannual_pet: bool, default FalseEnables the reading of PET in the form of interannual PET.
pet_directory: strPath to the directory with PET files.
sparse_storage: bool, default FalseEnables the sparse storage of atmospheric data (i.e. precipitation and PET) and simulated discharge.
mean_forcing: bool, default TrueEnables the calculation of average atmospheric data (i.e. precipitation and PET) by catchment.
read_descriptor: bool, default FalseEnables the reading of physiographic descriptor files.
descriptor_directory: strPath to the directory with physiographic descriptor files.
descriptor_name: list[str]List of physiographic descriptor names (the size of the list will be used to allocate the descriptor array and used to read the corresponding files).
Note
See the User Guide section: Model input data convention for more.
Output options#
save_qsim_domain: bool, default FalseEnables the save of simulated discharge on the entire domain.
save_net_prcp_domain: bool, default FalseEnables the save of simulated net precipitation on the entire domain.
Mesh#
In this section all the mesh options that can be passed to the mesh dictionary needed to initialize the Model object will be presented.
Spatial options#
dx: float, default 1000Simulation spatial step in meters.
nrow: intNumber of rows in the grid.
ncol: intNumber of columns in the grid.
xmin: floatLower left corner x value. This value depends on the projection system used.
ymax: floatUpper left corner y value. This value depends on the projection system used.
Gauge options#
ng: intNumber of gauges in the grid.
gauge_pos: numpy.ndarray, shape=(2, ng), dtype=np.int32Position of gauges in the grid.
code: numpy.ndarray, shape=(20, ng), dtype=UCode of gauges.
area: numpy.ndarray, shape=(ng), dtype=np.float32Area of gauges in square meters.
Grid options#
flwdir: numpy.ndarray, shape=(nrow, ncol), dtype=np.int32Grid flow directions.
smashis using a D8 flow directions with the following convention.
flwacc: numpy.ndarray, shape=(nrow, ncol), dtype=np.int32Grid flow accumulation in number of cells.
flwdst: numpy.ndarray, shape=(nrow, ncol), dtype=np.float32Grid flow distances from the most downstream outlet for each group of nested catchments.
path: numpy.ndarray, shape=(2, nrow * ncol), dtype=np.int32Grid calculation path. Sorting grid cells in ascending order of flow accumulation.
Active cell options#
nac: intNumber of active cells.
active_cell: numpy.ndarray, shape=(nrow, ncol), dtype=np.int32Grid active cells. Cells that contribute to the discharge of any gauge on the grid.