smash.factory.Net.add_dense#
- Net.add_dense(neurons, input_shape=None, activation=None, kernel_initializer='glorot_uniform', bias_initializer='zeros')[source]#
Add a fully-connected layer to the neural network.
This method adds a dense layer into the neural network graph but does not initialize its weight and bias values.
- Parameters:
- neuronsint
The number of neurons in the layer.
- input_shapeint, tuple, list, or None, default None
The expected input shape of the layer. It must be specified if this is the first layer in the network.
- activationstr or None, default None
Add an activation layer following the current layer if specified. Should be one of
'relu': Rectified Linear Unit'sigmoid': Sigmoid'selu': Scaled Exponential Linear Unit'elu': Exponential Linear Unit'softmax': Softmax'leakyrelu': Leaky Rectified Linear Unit'tanh': Hyperbolic Tangent'softplus': Softplus'silu': Sigmoid Linear Unit
- kernel_initializerstr, default ‘glorot_uniform’
Kernel initialization method. Should be one of
'uniform','glorot_uniform','he_uniform','normal','glorot_normal','he_normal','zeros'.- bias_initializerstr, default ‘zeros’
Bias initialization method. Should be one of
'uniform','glorot_uniform','he_uniform','normal','glorot_normal','he_normal','zeros'.
Examples
>>> from smash.factory import Net >>> net = Net() >>> net.add_dense(128, input_shape=12, activation="relu") >>> net.add_dense(32, activation="sigmoid") >>> net +----------------------------------------------------------+ | Layer Type Input/Output Shape Num Parameters | +----------------------------------------------------------+ | Dense (12,)/(128,) 1664 | | Activation (ReLU) (128,)/(128,) 0 | | Dense (128,)/(32,) 4128 | | Activation (Sigmoid) (32,)/(32,) 0 | +----------------------------------------------------------+ Total parameters: 5792 Trainable parameters: 5792