smash.factory.Net.forward_pass#
- Net.forward_pass(x)[source]#
Perform a forward pass through the neural network.
- Parameters:
- x
numpy.ndarray An array representing the input data for the neural network. The shape of this array must be broadcastable into the input shape of the first layer.
- x
- Returns:
- y
numpy.ndarray The output of the neural network after passing through all layers.
- y
Examples
>>> from smash.factory import Net >>> net = Net() >>> net.add_dense(12, input_shape=5, activation="tanh") >>> net.add_dense(3, activation="softmax") >>> net +----------------------------------------------------------+ | Layer Type Input/Output Shape Num Parameters | +----------------------------------------------------------+ | Dense (5,)/(12,) 72 | | Activation (TanH) (12,)/(12,) 0 | | Dense (12,)/(3,) 39 | | Activation (Softmax) (3,)/(3,) 0 | +----------------------------------------------------------+ Total parameters: 111 Trainable parameters: 111
Set random weights
>>> net.set_weight(random_state=1)
Run the forward pass
>>> import numpy as np >>> x = np.array([0.1, 0.11, 0.12, 0.13, 0.14]) >>> net.forward_pass(x) array([[0.31315546, 0.37666753, 0.31017701]])