Bibliography#

[Bot12]

Léon Bottou. Stochastic gradient descent tricks. Neural Networks: Tricks of the Trade: Second Edition, pages 421–436, 2012.

[CMM98]

Ven Te Chow, David R. Maidment, and Larry W. Mays. Applied Hydrology. McGraw-Hill Series in Water Resources and Environmental Engineering, 1998.

[DW21]

Marcos Duarte and Renato Naville Watanabe. Notes on Scientific Computing for Biomechanics and Motor Control. March 2021. URL: https://doi.org/10.5281/zenodo.4599319, doi:10.5281/zenodo.4599319.

[DHS11]

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of machine learning research, 2011.

[EAL+15]

I. Emmanuel, H. Andrieu, E. Leblois, N. Janey, and O. Payrastre. Influence of rainfall spatial variability on rainfall–runoff modelling: benefit of a simulation approach? Journal of Hydrology, 531:337–348, 2015. Hydrologic Applications of Weather Radar. URL: https://www.sciencedirect.com/science/article/pii/S0022169415003170, doi:https://doi.org/10.1016/j.jhydrol.2015.04.058.

[FA20]

Nathalie Folton and Patrick Arnaud. Indicateurs sur la ressource en eau estimés par une modélisation pluie-débit regionalisée : la base de donnees web loieau. La Houille Blanche, 3:22 – 29, 2020. doi:https://doi.org/10.1051/lhb/2020034.

[GLG+17]

Federico Garavaglia, Matthieu Le Lay, Frèderic Gottardi, Rèmy Garçon, Joèl Gailhard, Emmanuel Paquet, and Thibault Mathevet. Impact of model structure on flow simulation and hydrological realism: from a lumped to a semi-distributed approach. Hydrology & Earth System Sciences, 2017.

[Gra13]

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850, 2013.

[HP13]

Laurent Hascoet and Valérie Pascual. The tapenade automatic differentiation tool: principles, model, and specification. ACM Transactions on Mathematical Software (TOMS), 39(3):1–43, 2013.

[JAJG+20]

Maxime Jay-Allemand, Pierre Javelle, Igor Gejadze, Patrick Arnaud, Pierre-Olivier Malaterre, Jean-Alain Fine, and Didier Organde. On the potential of variational calibration for a fully distributed hydrological model: application on a mediterranean catchment. Hydrology and Earth System Sciences, pages 1–24, 2020. doi:10.5194/hess-24-5519-2020.

[Ker20]

James R Kermode. F90wrap: an automated tool for constructing deep python interfaces to modern fortran codes. J. Phys. Condens. Matter, March 2020. doi:10.1088/1361-648X/ab82d2.

[KB14]

Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

[Klemevs86]

Vit Klemeš. Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31(1):13–24, 1986.

[LM08]

N. Le Moine. Le bassin versant de surface vu par le souterrain : une voie d'amélioration des performances et du réalisme des modles pluie-débit ? PhD thesis, Cemagref (UR HBAN, Antony, 2008.

[LLWB94]

Xu Liang, Dennis P. Lettenmaier, Eric F. Wood, and Stephen J. Burges. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research: Atmospheres, 99(D7):14415–14428, 1994. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JD00483, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/94JD00483, doi:https://doi.org/10.1029/94JD00483.

[LH79]

V Lyne and M Hollick. Stochastic time-variable rainfall-runoff modelling. In Institute of Engineers Australia National Conference, volume 79, 89–93. Institute of Engineers Australia Barton, Australia, 1979.

[Mic89]

C Michel. Hydrologie appliquée aux petits bassins ruraux. Hydrology handbook (in French), Cemagref, Antony, France, 1989.

[Mon24]

Jerome Monnier. Data Assimilation - Inverse Problems, Assimilation, Control, Learning. INSA Toulouse, 2024. URL: https://www.math.univ-toulouse.fr/~jmonnie/Enseignement/CourseVDA.pdf.

[NM90]

Rory J Nathan and Thomas A McMahon. Evaluation of automated techniques for base flow and recession analyses. Water resources research, 26(7):1465–1473, 1990.

[PMA03]

Charles Perrin, Claude Michel, and Vazken Andrèassian. Improvement of a parsimonious model for streamflow simulation. Journal of hydrology, 279(1-4):275–289, 2003.

[Tod96]

E. Todini. The arno rainfall—runoff model. Journal of Hydrology, 175(1):339–382, 1996. URL: https://www.sciencedirect.com/science/article/pii/S0022169496800163, doi:https://doi.org/10.1016/S0022-1694(96)80016-3.

[WM15]

IK Westerberg and Hilary K McMillan. Uncertainty in hydrological signatures. Hydrology and Earth System Sciences, 19(9):3951–3968, 2015.

[ZBLN94]

C Zhu, RH Byrd, P Lu, and J Nocedal. L-bfgs-b: a limited memory fortran code for solving bound constrained optimization problems: eecs department, northwestern university, evanston. Technical Report, IL, Technical Report No. NAM–11, 1994.

[ZBV+11]

D. Zoccatelli, M. Borga, A. Viglione, G. B. Chirico, and G. Blöschl. Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 15(12):3767–3783, 2011. URL: https://hess.copernicus.org/articles/15/3767/2011/, doi:10.5194/hess-15-3767-2011.