smash.Optimize#
- class smash.Optimize(data=None)[source]#
Represents optimize optional results.
- Attributes:
- time_step
pandas.DatetimeIndex A list of length n containing the returned time steps.
- rr_statesFortranDerivedTypeArray
A list of length n of
RR_StatesDTfor each time_step.- q_domain
numpy.ndarray An array of shape (nrow, ncol, n) representing simulated discharges on the domain for each time_step.
- internal_fluxesdict[str,
numpy.ndarray] A dictionary where keys are the names of the internal fluxes and the values are array of shape (nrow, ncol, n) representing an internal flux on the domain for each time_step.
- control_vector
numpy.ndarray An array of shape (k,) representing the control vector solution of the optimization (it can be transformed).
- net
Net The trained neural network.
- costfloat
Cost value.
- n_iterint
Number of iterations performed.
- projg
numpy.ndarray Projected gradient value (infinity norm of the Jacobian matrix).
- jobsfloat
Cost observation component value.
- jregfloat
Cost regularization component value.
- lcurve_wjregdict[str, Any]
A dictionary containing the wjreg lcurve data. The elements are:
- wjreg_optfloat
The optimal wjreg value.
- wjreg_approx: float
The approximative wjreg value evaluated with one optimization cycle only.
- distance
numpy.ndarray An array of shape (6,) representing the L-Curve distance for each optimization cycle (the maximum distance corresponds to the optimal wjreg).
- cost
numpy.ndarray An array of shape (6,) representing the cost values for each optimization cycle.
- jobs
numpy.ndarray An array of shape (6,) representing the jobs values for each optimization cycle.
- jreg
numpy.ndarray An array of shape (6,) representing the jreg values for each optimization cycle.
- wjreg
numpy.ndarray An array of shape (6,) representing the wjreg values for each optimization cycle.
- time_step
See also
smash.optimizeModel assimilation using numerical optimization algorithms.
Notes
The object’s available attributes depend on what is requested by the user during a call to
optimizein return_options.