smash.Optimize#
- class smash.Optimize(data=None)[source]#
Represents optimize optional results.
See also
smash.optimize
Model assimilation using numerical optimization algorithms.
Notes
The object’s available attributes depend on what is requested by the user during a call to
optimize
in return_options.- Attributes:
- time_step
pandas.DatetimeIndex
A list of length n containing the returned time steps.
- rr_statesFortranDerivedTypeArray
A list of length n of
RR_StatesDT
for each time_step.- q_domain
numpy.ndarray
An array of shape (nrow, ncol, n) representing simulated discharges on the domain for each time_step.
- iter_cost
numpy.ndarray
An array of shape (m,) representing cost iteration values from m iterations.
- iter_projg
numpy.ndarray
An array of shape (m,) representing infinity norm of the projected gardient iteration values from m iterations.
- control_vector
numpy.ndarray
An array of shape (k,) representing the control vector at end of optimization.
- net
Net
The trained neural network.
- costfloat
Cost value.
- jobsfloat
Cost observation component value.
- jregfloat
Cost regularization component value.
- lcurve_wjregdict[str, Any]
A dictionary containing the wjreg lcurve data. The elements are:
- wjreg_optfloat
The optimal wjreg value.
- distance
numpy.ndarray
An array of shape (6,) representing the L-Curve distance for each optimization cycle (the maximum distance corresponds to the optimal wjreg).
- cost
numpy.ndarray
An array of shape (6,) representing the cost values for each optimization cycle.
- jobs
numpy.ndarray
An array of shape (6,) representing the jobs values for each optimization cycle.
- jreg
numpy.ndarray
An array of shape (6,) representing the jreg values for each optimization cycle.
- wjreg
numpy.ndarray
An array of shape (6,) representing the wjreg values for each optimization cycle.
- time_step