smash.factory.Net.layers#
- property Net.layers[source]#
List of Layer objects defining the graph of the network.
Examples
>>> from smash.factory import Net >>> net = Net() >>> net.add_dense(32, input_shape=6, activation="relu") >>> net.add_dropout(0.2) >>> net +-------------------------------------------------------+ | Layer Type Input/Output Shape Num Parameters | +-------------------------------------------------------+ | Dense (6,)/(32,) 224 | | Activation (ReLU) (32,)/(32,) 0 | | Dropout (32,)/(32,) 0 | +-------------------------------------------------------+ Total parameters: 224 Trainable parameters: 224
If you are using IPython, tab completion allows you to visualize all the attributes and methods of each Layer object:
>>> layer_1 = net.layers[0] >>> layer_1.<TAB> layer_1.bias layer_1.n_params() layer_1.bias_initializer layer_1.neurons layer_1.bias_shape layer_1.output_shape() layer_1.input_shape layer_1.trainable layer_1.kernel_initializer layer_1.weight layer_1.layer_input layer_1.weight_shape layer_1.layer_name()
>>> layer_2 = net.layers[1] >>> layer_2.<TAB> layer_2.activation_name layer_2.output_shape( layer_2.input_shape layer_2.n_params( layer_2.layer_name( layer_2.trainable
>>> layer_3 = net.layers[2] >>> layer_3.<TAB> layer_3.drop_rate layer_3.n_params( layer_3.input_shape layer_3.output_shape( layer_3.layer_name( layer_3.trainable