smash.Model.get_nn_parameters_bias#

Model.get_nn_parameters_bias()[source]#

Get the bias of the parameterization neural network.

Returns:
valuelist[numpy.ndarray]

A list of arrays representing the biases of trainable layers.

See also

Model.nn_parameters

The weight and bias of the parameterization neural network.

Model.set_nn_parameters_bias

Set the values of the bias in the parameterization neural network.

Examples

>>> from smash.factory import load_dataset
>>> setup, mesh = load_dataset("cance")

Set the hydrological module to 'gr4_mlp' (hybrid hydrological model with multilayer perceptron)

>>> setup["hydrological_module"] = "gr4_mlp"

Set the number of neurons in the hidden layer to 6 (the default value is 16, if not set)

>>> setup["hidden_neuron"] = 6
>>> model = smash.Model(setup, mesh)

By default, the biases of trainable layers are set to zero. Access to their values with the getter methods get_nn_parameters_bias

>>> model.get_nn_parameters_bias()
[array([0., 0., 0., 0., 0., 0.], dtype=float32), array([0., 0., 0., 0.], dtype=float32)]

The output contains a list of bias values for trainable layers.