smash.Model.set_control_bayesian_optimize#
- Model.set_control_bayesian_optimize(control_vector, mapping='uniform', optimizer=None, optimize_options=None, cost_options=None)[source]#
Retrieve the Model parameters/states from the bayesian optimization control vector.
- Parameters:
- control_vector
numpy.ndarray A 1D array representing the control values, ideally obtained from the
bayesian_optimize(orModel.bayesian_optimize) method.- mappingstr, default ‘uniform’
Type of mapping. Should be one of
'uniform''distributed''multi-linear''multi-power'
Hint
See the Mapping section.
- optimizerstr or None, default None
Name of optimizer. Should be one of
'sbs'(only for'uniform'mapping)'nelder-mead'(only for'uniform'mapping)'powell'(only for'uniform'mapping)'lbfgsb'(for all mappings)'adam'(for all mappings)'adagrad'(for all mappings)'rmsprop'(for all mappings)'sgd'(for all mappings)
Note
If not given, a default optimizer will be set as follows:
'sbs'for mapping ='uniform''lbfgsb'for mapping ='distributed','multi-linear','multi-power'
Hint
See the Optimization Algorithms section.
- optimize_optionsdict[str, Any] or None, default None
Dictionary containing optimization options for fine-tuning the optimization process. See
default_bayesian_optimize_optionsto retrieve the default optimize options based on the mapping and optimizer.- parametersstr, list[str, …] or None, default None
Name of parameters to optimize. Should be one or a sequence of any key of:
Model.nn_parameters, if using a hybrid model structure (depending on hydrological_module)
>>> optimize_options = { "parameters": "cp", } >>> optimize_options = { "parameters": ["cp", "ct", "kexc", "llr"], }
Note
If not given, all parameters in
Model.rr_parameters,Model.nn_parameters(if used) ,Model.serr_mu_parameters,Model.serr_sigma_parameterswill be optimized.- boundsdict[str, tuple[float, float]] or None, default None
Bounds on optimized parameters. A dictionary where the keys represent parameter names, and the values are pairs of
(min, max)values (i.e., a list or tuple) withminlower thanmax. The keys must be included in parameters.>>> optimize_options = { "bounds": { "cp": (1, 2000), "ct": (1, 1000), "kexc": (-10, 5) "llr": (1, 1000) }, }
Note
If not given, default bounds will be applied to each parameter. See
Model.get_rr_parameters_bounds,Model.get_rr_initial_states_bounds,Model.get_serr_mu_parameters_boundsandModel.get_serr_sigma_parameters_bounds- control_tfmstr or None, default None
Transformation method applied to bounded parameters of the control vector. Should be one of
'keep''normalize''sbs'('sbs'optimizer only)
Note
If not given, the default control vector transformation is control_tfm =
'normalize'except for the'sbs'optimizer, where control_tfm ='sbs'. This options is not used when mapping is'ann'.- descriptordict[str, list[str, …]] or None, default None
Descriptors linked to optimized parameters. A dictionary where the keys represent parameter names, and the values are list of descriptor names. The keys must be included in parameters.
>>> optimize_options = { "descriptor": { "cp": ["slope", "dd"], "ct": ["slope"], "kexc": ["slope", "dd"], "llr": ["dd"], }, }
Note
If not given, all descriptors will be used for each parameter. This option is only be used when mapping is
'multi-linear'or'multi-power'. In case of'ann', all descriptors will be used.- termination_critdict[str, Any] or None, default None
Termination criteria. The elements are:
'maxiter': The maximum number of iterations.'xatol': Absolute error in solution parameters between iterations that is acceptable for convergence. Only used when optimizer is'nelder-mead'.'fatol': Absolute error in cost function value between iterations that is acceptable for convergence. Only used when optimizer is'nelder-mead'.'factr': An additional termination criterion based on cost values. Only used when optimizer is'lbfgsb'.'pgtol': An additional termination criterion based on the projected gradient of the cost function. Only used when optimizer is'lbfgsb'.'early_stopping': A positive number to stop training when the cost function does not decrease below the current optimal value for early_stopping consecutive iterations. When set to zero, early stopping is disabled, and the training continues for the full number of iterations. Only used for adaptive optimizers (i.e.,'adam','adagrad','rmsprop','sgd').
>>> optimize_options = { "termination_crit": { "maxiter": 10, "factr": 1e6, }, } >>> optimize_options = { "termination_crit": { "maxiter": 200, "early_stopping": 20, }, }
Note
If not given, default values are set to each elements.
- cost_optionsdict[str, Any] or None, default None
Dictionary containing computation cost options for simulated and observed responses. The elements are:
- end_warmupstr,
pandas.Timestampor None, default None The end of the warm-up period, which must be between the start time and the end time defined in
Model.setup.>>> cost_options = { "end_warmup": "1997-12-21", } >>> cost_options = { "end_warmup": pd.Timestamp("19971221"), }
Note
If not given, it is set to be equal to the
Model.setupstart time.- gaugestr or list[str, …], default ‘dws’
Type of gauge to be computed. There are two ways to specify it:
An alias among
'all'(all gauge codes) or'dws'(most downstream gauge code(s))A gauge code or any sequence of gauge codes. The gauge code(s) given must belong to the gauge codes defined in the
Model.mesh
>>> cost_options = { "gauge": "dws", } >>> cost_options = { "gauge": "V3524010", } >>> cost_options = { "gauge": ["V3524010", "V3515010"], }
- control_priordict[str, list[str, list[float]]] or None, default None
Prior applied to the control vector. A dictionary containing the type of prior to link to control vector. The keys are any control parameter name (i.e.
'cp-0','cp-1-1','cp-slope-a', etc.), seebayesian_optimize_control_infoto retrieve control parameters names. The values are list of length 2 containing distribution information (i.e. distribution name and parameters). Below, the set of available distributions and the associated number of parameters:'FlatPrior', [] (0)'Uniform', [lower_bound, higher_bound] (2)'Gaussian', [mean, standard_deviation] (2)'Exponential', [threshold, scale] (2)'LogNormal', [mean_log, standard_deviation_log] (2)'Triangle', [peak, lower_bound, higher_bound] (3)
>>> cost_options = { "control_prior": { "cp-0": ["Gaussian", [200, 100]], "kexc-0": ["Gaussian", [0, 5]], } }
Note
If not given,
'FlatPrior'is applied to each control vector parameter (i.e. equivalent to no prior).Hint
See a more detailed explanation on the available distributions in Bayesian Estimation section.
- end_warmupstr,
- control_vector
Examples
>>> from smash.factory import load_dataset >>> setup, mesh = load_dataset("cance") >>> model = smash.Model(setup, mesh)
Define a callback function to store the control vector solutions during the optimization process
>>> iter_control = [] >>> def callback(iopt, icontrol=iter_control): ... icontrol.append(iopt.control_vector)
Optimize the Model
>>> model.bayesian_optimize(callback=callback)
Retrieve the model parameters from the control vector solution at the first iteration
>>> model.set_control_bayesian_optimize(iter_control[0])
Perform a forward run to update the hydrological responses and final states
>>> model.forward_run()